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CHARACTERIZATION  OF   SQUIB  MK   1  MOD   0: 
SENSITIVITY TO   9  GC   RADAR   IN  THE   NEAR   FIELD 

By 
Gary  P.   Carver 

ABSTRACT:     Power  delivered by a   radar   set  at   9 Gc was 
coupled  to the Mk  1  squib by  using  the  squib   leads  as 
3/2   ^ dipoles   placed at  the  mouth   of a micro-wave  horn. 
Bridgewire  temperatures were measured by injecting DC 
current  at  the  RF voltage  null  points on the dipoles. 
Temperatures   for   firings averaged   2 30oC.     400oC was 
expected.     Though some temperature  oscillograms  showed 
normal  thermal  stacking,   there were many cases  indica- 
ting variation  of coupling or  internal   flow of RF energy, 
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the response of the Mk  1 Mod 0 Squib to 9Gc radar pulses. 
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The results should be of particular  interest to those 
attempting to correlate probability of EED  firing with the 
BED bridgewire temperature at micro-wave  frequencies since 
this work reinforces the idea that such a correlation may 
be tenable only in part. 
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INTRODUCTION 

On« task of the  Naval Ordnance Laboratory,   White Oak, 
under the HERO program  is  to   investigate  the  response of 
EED's  to different types  of electrical  stimuli.  A mathe- 
matical  model   (termed  the electro-thermal model)   has been 
formulated   for bridgewire   squibs which  describes  the 
tempsrature/resistance/time behavior of the  bridgowire  in 
terms  of the thermal  characteristics of the   squib^-'^* 
Techniques   for determining  the  necessary  thermal   parameters 
have been developed  along with   safe and accurate   instru- 
mentation designed  specifically   for  this  purpose3,4,5. 

The  Squib,  Mk   1 Mod   0,   was  chosen   for the  NOL  studies 
because   it was  involved   in accidental RF   firings  of 2.75- 
inch  rockets and  is considered  typical of bridgewire type 
initiators currently  in  use.     Fxperimental work with  the 
Mk  1 Squib,   including constant  voltage and  constant  current 
DC   firing,   capacitor discharge   firing,   and  0 to  5 megacycle 
AC  firing,   has supported  the  predictions of  the  rnodel^"^   . 

However,   in the Summer  of  1962,   the   first   serious 
deviation of results   from predictions based  on  the  electro- 
thermal  model was brought  to   light  \t\  Reference   13  .    The 
bridgewire temperatures of   fully  loaded Squibs Mk   1 Mod 0, 
fired  in a wave-guide by irradiation with  9Gc radar were 
much  lower than expected.     It was also reported that a 
considerable amount  of power was absorbed  other  than  in 
the bridgewire.     It was hypothesized that   initiation was 
probably due to mechanisms other than ohmic heating of the 
bridgewire,  a basic assumption of the electro-thermal model. 
An alternate hypothesis exists:     rhe  irradiation  time  is 
so  long  that the hot-spot  theory must be  adjusted  to allow 
fox   the   fact  that the   firing  temperature  decreases  an the 
quantity of heated exnlosive   increases and  the heating time 
increases.    Whether or not  the  power absorption  in  portions 
of the  EED other  than  the bridgewire would be  necessary  for 
anomalous  initiations  remained   to be proved. 

Figure !•• shows what   is meant by the  term "thermal 
stacking".     This response  pattern  is expected when  squibs 
are  subjected to pulse  radar  energy.    A itore  detailed 
discussion can be   found   in Reference  13. 

*  References are on page   21. 
** These   are theoretical   curves   for  a repetition  rate of 

500  pps.     The data  in  this   report are  at  400  pps. 
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The  study reported herein was conducted  to determine 
whether or not  the   low temperature   firings by radar were 
peculiar to the experimental  setup and,   if  not,   to attempt 
to discover  the general  mechanism(s)   responsible   for  the 
low temperature   initiation. 

EXPERIMENTAL   PROCEDURE   AND  APPARATUS 

The temperature  coefficient  of resistance,   M,   for each 
of  the   100  squibs  used   in  this  study was  determined by 
measuring each bridgewire   resistance  at  temperatures of 
approximately 80 and  0oC.     A copper-constantan thermocouple 
attached   individually  to  each  squib was  used  to  record  the 
temperature of the  unit while  resistance  measurements were 
made on the  self balancing bridge.       The data were processed 
on an IBM 7090 computer which calculated M*  and  y  for each 
squib where 

M .     -^    and   v  =    I   <R +  **?* . 

For the  radar  tests  the  leads of the   squibsvere cut   so 
that   the distance between  their ends when  spread  apart  was 
4.5  cm.     This  effectively made  the   squibs   into  3/2 wavelength . 
dipole antennas.      (A  discussion of the  experimental observa- | 
tions which  led  to this  approach  and  a   short  explanation  of 
basic  theory may be   found   in Appendix A and  Figure  2.)     Two- 
inch   lengths of  22 gauge  uninsulated  wire were  carefully 
soldered  onto  the   squib   leads  at   the  voltage  nodes a distance 
of  6.5 millimeters   from each  end.     Connection was made  to 
these  "Lecher"   wires   (parallel  transmission   line)      for  the 
small  DC monitoring  current.     Figure   3   shows  the   squib ready 
for   firing. 

The  squibs were  held   inside  the   firing  chamber by a 
specially constructed  tool  that  tightened  onto the  squib 
body but provided  no electrical connection to the chamber 
or  to the circuitry.      (Figures 4,   5,   and  6J     A wooden dowel 
from the holder came  through a  small hole   in  the   firing 
chamber and was  in turn held  in position by a clamp.    The 

Where M is the  rate of change of bridgewire  resistance 
with temperature, 

V  is the  heat-loss   factor   (power dissipated per 
degree  temperature elevation), 

R is the  resistance at ambient  temperature 
AR is  the  resistance elevation due  to 
LT,  the temperature above ambient. 
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LECHER WIRE CONNECTIONS FOR 
MONITORING IcURRENT 
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FIG. 2     VOLTAGE AND CURRENT DISTRIBUTION IN A THREE HALVES 
WAVELENGTH   DIPOLE ANTENNA 
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FIG. 4     EXPLODED VIEW  OF HOLDER AND SQUIB 

FIG. 5      SQUIB  FASTENED IN HOLDER  (BOTTOM) 

FIG. 6     SQUIB  FASTENED IN HOLDER (TOP) 
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squibs were mounted with their leads spread apart somewhat 
less than 180° in the plane of the E-fieId.  Connectior» for 
the monitoring current were made with alligator clips.  The 
Lecher wires were at right angles to the squib leads.  The 
equipment is shown in Figures 7 and 8. 

The squibs were irradiated by a 3db horn*.  RF power 
was supplied by the modulator and transmitter of a Navy 50 
12 M X-band mobile radar unit operating at a frequency of 
approximately 9Gc and at a pulse repetition rate (PRR) of 
400 pps. The signal was on for two microseconds and off 
for 2.5 milliseconds.  Peak power was approximately 50kw 
resulting in an average of 3 watts per square centimeter 
at the end of the horn.  (Peak field intensity at the 
mouth of the horn is then 24 volts per centimeter.)  A 
section of X-band rectangular wave-guide carried the RF 
directly from the magnetron to the pyramidal horn. 
Figure 9a shows a block diagram of the experimental setup. 

The 100 units were submitted to the M-determination, 
had their leads cut to length, the Lecher wires attached, 
and assigned in random sequence to the firing program. 
Sixty-eight of these 100 squibs were exposed to the 9Gc 
radiation. Exposure lasted for 50 milliseconds (40 pulses) ) 
and was repeated, if necessary, at intervals of two, and 
then ten, minutes. If a squib did not fire by the third 
exposure, it was discarded and noted as a "fail". 

Simulated radar firings by constant current of about 
1.8 amps and a pulse width of 125 microseconds, and a PRR 
of 400 per second were carried out on the remaining 32 
squibs of the original 100. A block diagram of the 
apparatus is shown in Figure 9b. A picture of a typical 
pulse is reproduce^ in Figure 10a, and the resultant thermal 
stacking is shown m Figure 10b. 

OBSERVATIONS AND RESULTS 

The results for the 68 test firings of the Squibs 
exposed to 9Gc radar, are presented graphically in Figures 
II and 12. A total of 35 squibs fired in the experimentt 
27 during the first exposure, five during the second 
exposure, and six during the third. 

Microwave horns are rated by comparing the signal at a 
given distance directly in front of the horn with the 
expected signal level from a spherically uniform 
radiating point source. 

j 
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FIG.8      SQUIB IN  PLACE  READY  FOR   FIRING 
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500   MICROSECONDS 

(0)      TRACE  OF ONE  PULSE  FROM  SIMULATION   EQUIPMENT 

(b)     THERMAL    STACKING  DUE TO  DC  SIMULATION   PULSES 

FIG. 10      SIMULATION   PULSING   OSCILLOGRAMS 
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I 

EXPOSURE 

FIG. 12      MAXIMUM TEMPERATURES REACHED BY THE ELEVEN SOUIBS 
THAT FIRED  ON THE SECOND OR THIRD EXPOSURE 
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A small number of squibs, modified by removal of the 
copper cup and base charge, were also tested under the same 
conditions.  Incidence of firing and highest temperature 
reached before initiation were comparable with those 
obtained using the fully loaded squibs.  While the results 
are not represented in the graphical analysis, the observed 
behavior of these few modified squibs will be discussed as 
it does shed some light on the characteristics of RF firing 
of fully loaded units. 

The radar simulation (DC) equipment successfully dupli- 
cated the thermal stacking process. Of the 32 squibs tested 
on the DC pulsing apparatus, 23 fired. The comparison 
between maximum temperatures reached prior to firing of the 
two groups is already illustrated in Figure 11. 

A typical oscillogram showing the thermal stacking 
achieved with the pulsing equipment was shown in Figure 10b. 
Each vertical line is actually a pulse whose peak is propor- 
tional to the maximum temperature reached by the bridgewire 
during that pulse. The initial rising, then leveling off, 
of the peaks is characteristic of the thermal stacking 
process. The cooling period does not appear since there I 
is no "monitoring current" between pulsen and the voltage ' 
acroaa the bridgewire drops to lero. (The base lihe was set 
below the screea to permit greater amplification fpr improved 
trace resolution.) Temperature calculations are similar 
to those for the radar tests as explained in Appendix C. 

DISCUSSION OF RESULTS 

Unusually low bridgewire temperature firings have been 
observed. The results verify the evidence previously 
reported in NOLTR 62-77, that the mathematical model, or 
more likely the basic assumptions (such as the firing tempera- 
ture) is not applicable at frequencies as high as 9Gc.  In 
addition, the major problem encountered in the earlier study, 
i.e., the high voltages between the H-plane faces of the 
wave-guide has been eliminated because the present studies 
took place outside the wave-guide. 

The calculated maximum temperatures (above ambient) 
reached prior to firing by the bridgewires of the squibs 
that initiated ranged from a low of 1200C up to 320 C. 
The average was 230eC.  This average is 70° lower than 
that obtained on the DC simulation equipment and only about 
half the 400 - 500oC expected for firing by other types of 
electrical stimuli under adiabatic conditions. 

13 
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The data may be  treated  in another way.     Statistical  ,_ 
methods  patterned after the  techniques  of Golub and Grubbs 
have been developed by NOL  for handling Go/No-Go data where 
the  stimulus cannot be determined before the  experiment but 
can b« measured during or after  the experiment.     The HOL 
meth'v4  fxisrmits  use  of the  logistic where the Golub and  Grubbs 
analyses  require an underlying  normal distribution.     By this 
method  it   is possible to compute a temperature at which  50% 
response would be expected,   provided we assuiae  that  the 
observed  temperatures are Go/Mo-Go data.*    In the accompany- 
ing table we compare:     (1)   the  results  of processing  the 
data on the assumption that  the observed temperatures were 
the critical   levels,  with   (2)   the  results assuming Go/No-Go 
data.    In the next to the  last column,   the column heading, 
or,   is the variability parameter  in the  logistic distribution 
function which  is comparable  to  s,   the   standard deviation 
of the Gaussian distribution  function.     Near the  50%  firing 
point o   is about  3/5 as big as  s   for distributions with  the 
same slope. 

Group Assume 
Temperatur 

continuous datai 
B in  C                   j 
1 Assume Go/Nö-Go data 

Average s sm 1 1 50% response a sm     1 

First 
Radar 
Exposure 

239 51 10 206 23 9 

Second 
Radar 
Exposure 

225 86 35 !      263 42 34 

Third 
Radar 
Exposure 

222 33 15 1      243 30 25 

DC 
Simulated 
Radar 

292 32 7 250 
only one mixed 
level, no basis 
for estimating 
» or sm       1 

The  process  of analysis  of attributes  (handling of Go/ 
No-Go data)   assumes that   for each  unit there   is an 
unknown critical   level,   above which   it will  respond  and 
below which  it will not.     In the  present work we have 
observed  that  the maximum temperature of the  pulse  that 
caused  the   firing is  sometimes  less  than the maximum 
temperature  of  sc-ne preceeding  pulse.    This  indicates 
that  the  temperature   is  not  the  only parameter even 
though  it may be  the major  one. 

14 
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At a confidonce of 95% we cannot demonstrate a difference 
between the  first,   second,   and third radar exposures whether 
we  treat the data as continuous or as Go/No-Go  information. 
Also there may be no difference between the   firing temperatures 
for DC and  for microwave energy when we  look at  these grouped 
(averaged)   results.    On the  other hand when we  inspect indi- 
vidual data points and  look at distributions of results,   a 
different opinion can be  formed. 

Compared to the  simulation  firings a  significantly 
lower bridgewire temperature  is associated with the RF and, 
probably more important,  the low end of the temperature 
range  for the simulation firings are well defined while the 
lowest temperature radar  firings seem to be  scattered around 
within a  100°range. 

Graphical analysis uncovers no obvious connection 
between the temperature  prior to firing and the thermal 
parameters associated with each squib.    Although not shown, 
the  squibs that  fired did not differ as a group  from the 
misfires.    Numerical data,   showing irradiation history, 
maximum bridgewire temperature and EEO response are shown 
in Appendices B and C to permit comparison of these data 
with work which will be   forthcoming. 

The temperature history of three squibs is plotted by 
the bolder arrows in Figure  12.    At the bottom of the chart, 
a  s^uib is shown to have fired on the second exposure at 
120    after having experienced a rise in bridgewire tempera- 
ture of 120°  on the  first exposure.    Even more unusual is 
the behavior of the unit which reached 210°  on the  first 
exposure,  240°  on the second,  and then proceeded to fire 
after having only reached  180°  on the third  irradiation. 
Another reached maximum temperatures of 210°  and  180°  on 
the  first two exposures and then fired at a mere  130oC. 
One possible explanation may be that the explosive is 
being sensitised by the preceeding pulses.     But we are not 
aware of any experimental evidence of sensitization by 
pre-pulsing. 

A typical oscilloscope  trace of a  squib that went 
through the normal thermal stacking to equilibrium cycling 
process and did not  fire is shown in Figure  13a.    The 
trace of a squib that did  fire is shown in Figure  13b.    The 
little  spot immediately after the 24th pulse  is where the 
highest temperature was detected.    Sometimes the bridgewire 
did not burn out upon  firing.    A trace  similar to that 
shown in Figure 13c results. 

IS 
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(a) 

h~J   \ 

(C) (d) 

SWEEP    10 MS/CM 
AMPLIFICATION   5  MV/CM 

(e) 

FIG. 13      VARIOUS  OSCILLOGRAMS   SHOWING   NORMALAND 
ANOMALOUS   RESPONSES 
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Not all the  squibs were as well behaved as these   first 
few examples.     Figures  13(3 and  13e   illustrate a phenomenon 
whose cause cannot be  pinpointed but  might be due  to corona 
discharge at  the  ends of the  leads.     The effect  is to rob 
power  from the bridgewire.     A  few squibs  that  exhibited  this 
phenomenon  fired  anyway.     Examples are  shown  in Figures   14a 
and  14b.       Figure   14b  is  interesting   in yet another way. 
Note that the  cooling curve after the   last pulse was not 
interrupted until about a millisecond  later.     A similar 
behavior was observed   in Figure  14c where   firing took place 
midway between successive pulses. Note also that the equi- 
librium bridgewire  temperature after   the explosive decomposed 
is apparently higher  than before   firing.     The  value of v.   the 
heat-loss  factor,  would be expected  to be  lower under these 
conditions.     In Figure   14d  the  squib  appears  to have  fired 
after the radar was turned off.    It   is tempting to ascribe 
such delays in thermal  feedback after the  last pulse to a 
cooking off of the explosive.    However,   some work which  is yet 
to be published  indicates that the time  lag between applica- 
tion of an adiabatic pulse and thermal  feedback may viry   from 
50 to 420 ^seconds.    How much greater this time lag can be 
is not known. 

Another curious behavior pattern was that  instead of the 
temperature remaining  in a stable repetitive cycling pattern 
after the thermal stacking phase was over,   some squibs 
experienced  fluctuating temperature  trends.     Figur?   13 b  is 
an example.    Figure  14c  illustrates a   -quib that reached an 
equilibrium then suddenly rose to about twice that tempera- 
ture  for three  pulses and   fired.    Approximately one-third of 
the squibs tested on the  radar exhibited  some  sort of 
unpredictable behavior  such as those  described above.     (There 
was no correlation between the characteristics of these 
squibs and the majority of squibs that  showed normal thermal 
stacking.)    The  need   for more study  in this area  is clearly 
indicated. 

At  this time,   there   is good evidence of  two general 
mechanisms that  may be  responsible   for the  observed  low 
temperature  radar   firing.     In NOLTR  62-77  reference was 
made to standing wave  ratio tests which  proved that  RF  power 
was being absorbed other  than  in the bridgewire.     This   led 
to the conclusion that heating within the explosive  itself 
could be taking  place. 

The  likelihood of RF absorption by the  explosive  still 
exists.     It was mentioned earlier  that   squibs modified by 
removal of cup and base charge  showed an occurrence of  firir- 
and bridgewire   temperatures  similar  to that  of the   fully 
loaded units.     This may eliminate  the  cup and base charge as 
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FIG. 14       VARIOUS  OSCILLOGRAMS   SHOWING   NORMALAND 
ANOMALOUS   RESPONSE 
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agents in this mode of  initiation.     In addition,   it was 
observed that after a  squib  fired,   whether   it was a   fully 
loaded or a modified unit,   if it were  subjected to another 
burst of RF,   the  temperatures reached by the bridgewire 
would be much higher.     Figure  14f is an oscillogram of the 
same  squib shown in Figure  14e exposed  to another burst  of 
radar after it   fired.     This could be attributed to more power 
available to the bridge because  the explosive  is no  longer 
there to absorb power. 

Other evidence  of RF heating in the explosive,   specifically 
in  the primary charge,   is that  the modified   squibs were 
observed to  fire with a  dull sound as  opposed  to the  sharp 
crack heard when they are  fired by a  surge  of DC current. 

Another possible contributing  factcr in low temperature 
RF   firings  is the  skin effect.     The  skin depth  for the 
bridgewire at  9Gc  is about CL1 mil.     (See Appendix D)     This 
means that about  90% of all heating  is  taking place within 
the outer 20% of the cross-sectional area.     The present 
method of monitoring the  bridgewire  temperature necessarily 
results in average  temperature   figures.     Hence,  during each 
pulse the temperature at the surface of the bridgewire may 
be much higher than the  value obtained by the monitoring 
process. 

If tha  skin effect  is the major  factor,   the mathematical 
model may not be at   fault.    Calculations similar to those  in 
Appendix D  indicate  that   present temperature  monitoring tech- 
niques might  show unusually low temperature   firings at 
frequencies above approximately 200 megacycles.    This is 
when the skin depth would equal the radius of the bridgewire. 
(There are various  time constants connected with the heat 
flow in the wire and  in the explosive,   and  there is a problem 
of relative distances - distance to the center of the wire 
V8 minimum radius of a hot spot - which are  involved.    The 
problem is beyond  simple  calculations.) 

The results of the present  study support the data 
obtained two years ago from firings inside a wave-guide. 
But because the radiated energy environment more closely 
approaches practical conditions,   the entire  problem assumes 
a more immediate concern.    Present  simulators and other 
equipment used to detect bridgewire heating may not be 
adequate safety monitors  in a radar  field.    The exact 
mechanism(s)   of  firings by radar  is yet  to be understood. 
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The many questions   illustrate a  need   for more basic 
research  into initiation by other than adiabatic  conditions. 
It   is  now suspected that  slow,   almost bulk heating of the 
explosive,   results  in  initiation by  lower  than expected 
(from an adiabatic standpoint)   temperatures  at  the bridgewire, 
Hence,   the  important  criterion in radar   firings may not be 
the  instantaneous bridgewire  temperature but  some measure of 
the  temperature-time  relationship as   it relates  to the 
reaction kinetics of the  sensitive explosive  surrounding the 
bridgewire. 

To interpret accurately the results herein  from a 
theoretical standpoint,   further investigation into thermal 
stacking must be carried on.    For example,   data on time at 
firing versus energy per pulse,  pulse height,   pulse duration, 
etc.   is needed.    However,   it  is  felt that this by no means 
will completely explain the  low temperature   firings reported 
on in this study.    There  is clear indication that the high 
frequency electromagnetic  signal itself is responsible  for 
some anomalous mode of initiation.    The point is that this 
behavior must be isolated   from what  should be expected  from 
thermal stacking by pulsing. 
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APPENDIX A 

THEORY OF POWER ABSOKPTION IN FREE 
SPACE BY THE SQUIB 

When a radiated electromagnetic field impinges on a 
conductor, some of the electrons in the conductor are set 
in motion.  The varying field causes s milar variations in 
current in the conductor.  An antenna is a conductor 
specially designed to intercept electromagnetic energy. 
It is constructed so that the fields produced by the currents 
in the conductors add in some direction instead of cancelling 
out. 

A half or multiple half wavelength dipole is one type of 
antenna.  It consists of two lengths of wire each some odd 
multiple of a quarter wavelength long (at the operating 
frequency) spread end to end and connected by a load at the 
center. The currents in the conductors are maximum at the 
load and zero at the outside ends while voltage is minimum 
at the center and maximum at the ends. The current and 
voltage distribution along the antenna will always be the 
same but their amplitudes will vary with the frequency of 
the incoming radiation. 

Consider the three halves wavelength dipole antenna 
diagranatically illustrated in Figure 2. At an arbitrary 
instant current flowing to the right is represented by a 
positive amplitude on the current distribution curve and 
current to the left by a negative amplitude. Similarly, 
voltages at any point are positive or negative according 
to the position of the voltage distribution curve above or 
below the antenna.  (This configuration reverses during the 
next half wavelength.)  The current and voltage distribution 
curves behave as standing waves on the antenna.  Note that 
maximum current flows in the center. The load is therefor« 
in a favorable position to dissipate maximum power by 
ohmic heating. 

The squibs used in this study were prepared to approxi- 
mate a three-halves wavelength antenna. The individual squib 
leads were cut to 2.2 centimeters so that they measured, w!)en 
spread apart, 4.5 centimeters end to end rather than the 5.0 
centimeters that would be expected from the free space wave- 
length for this radar of 3.33 centimeters. 
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The method  used to monitor  the bridgewire  temperature 
requires that a constant small current  flow through the 
bridgewire.     Certainly the connections  for this current 
must be somewhere on the leads of the squib.    However,   a 
serious  reduction  in power absorbed by a test  squib   (as 
evidenced by the   fact that the bridgewire no longer glowed) 
was noted except when the wires   for  the monitoring current 
were carefully soldered 6.5 millimeters in from the ends of 
the  leads.    They then act as Lecher wires.    Neither the 
Lecher wire   length nor the manner  in which connection  is 
made was  found  to be critical. 

This behavior  is explained   in Figure  2.     One quarter 
wavelength  in  from the ends of the antenna are  stationary 
voltage  zero points - or nodes.     This   is where  the DC 
monitoring current connections are made on the squibs. 
Any high impedance circuit connected to these nodes will 
not  interfere with the standing wave voltage distribution 
and therefore will not disturb the  functioning of the antenna 
or the quantity of power absorbed  in the  lead.    The presence 
of the voltage nodes on the three halves wavelength antenna 
and not on the one half wavelength antenna is the reason  for 
choosing the  larger configuration.     The smaller size would 
have actually been more  favorable to work with in the confines 
of the end of the  small horn. 

The reader may find small discrepancies between the 
ideal situation and our experimentally observed distances. 
In practice an antenna is never  perfectly isc lated  from 
surrounding objects which may have an effect upon the effec- 
tive  length of the antenna.    Also,   the wavelengths of electro- 
magnetic waves are shorter  in a conductor than they are  in 
air.    To  further complicate the  problem,  there  is what may 
be called an effective length associated with the wires 
molded into the plug body which connects the external  lead 
wires.    Also the antenna behavior  is much more complex if the 
load is reactive rather than purely resistance as has been 
assumed. 

As a  final comment,  no attempt has been made to investi- 
gate the  impedance matching between various parts of the 
antenna-like «juibs«    Perhaps this  is an area  for  further study. 
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APPENDIX B 

BRIDGEWIRE TEMPERATURE AMD EEÜ RESPONSE TO 
PULSE  BURSTS   OF   9GC RADIATION 

1 Unit 
I.D. 

Number 
M 

\i6hmB/*C 

Number of Pulses Temp,: 
of *C 

Ln Hundreds 
above amb. 

Notes   | 
First 
Ex p. 

Second 
Exp, 

Third 
Exp First 

Exp. 
Second 
Exp. 

Third 
Exp. 

i  38 

93 

930 

955 

20 

20 

19* 

20 20 

1.3 

1.3 

1.5* 

1.0 1.4 

♦indicates 
firing 

33 985 20 20 20 1.4 1.4 1.5 

1  48 900 6* 3.2* 

|  92 963 20 20 20 1.4 1.0 1.4 

74 954 9* 2.5* 

i  9 963 20 20 «*# 1.7 1.4 mt -indicates  1 

1  54 

29 

1017 

1158 

20 

11* 

20 20 1.7 

2.8* 

1.5 1.8 lead wire 
snapped off 

1  24 934 20 20 20 1.2 1.2 1.3 

100 

56 

64 

22 

903 

882 

859 

904 

20 

20 

20 

20 

20 

20 

20 

20 

20 

20 

0.8 

1.1 

1.6 

1.7 

1.8* 

1.0 

1.7 

1.8 

0.7 

1.7 

1.8 

To express 
temperature 
in •^multi- 
ply by 100  1 
and add to  1 
300 

1 63 
864 20 20 20 1.7 1.7 2.3 

45 990 20 20 20 1.6 1.5 1.5 

34 972 20 20 8* 1.7 1.4 2.4* 

1  59 990 20 20 20 1.1 1.7 2.0 

71 1006 20 20 20 1.1 1.6 2.1 

1 75 
897 20 20 20 1.8 1.8 2.1 

26 972 20 20 20 1.5 2.1 0.6 

42 996 20 20 20 1.1 2.0 2.0 

19 940 1.5* 

! 55 1020 40 40 29* 2.5 2.3 2.9* 

67 1047 40 40 17* 1.9 1.8 2.6* 

CONTIN IUED 
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HuMber 
1   M 
uohms/* C 

1 Mumber of Pulses P^ in Hundreds above anb. 

1    Motes 
iPirst 
Exp. 

[Second 
Bxp. 

iThird 
Sxp. 

First 
Bxp. 

1 Second 
Bxp. 

IThird 
1 BXP» 

96 

58 

954 

933 
1  7* 

40 40 40 

2.5* 

1 1'2 I 1.3 1.6 

♦indicates 
firing 

41 i  914 1   7* 2.2* 

13 845 1  21* [ 2.5* 

1  60 990 1   6* 2.0* 

37 ]     898 40 40 , 40 , 1.3 1 1.5 1.5 
16 969 1  35* 1.5* 

23 955 17* 2.2* 

88 900 |  40 40 22* 2.1 1.8 1.4* 

47 
1 894 7* 

1 
i 2.5* 

1  72 1003 i  40 8* 2.0 3.2* 

66 992 40 40 40 1.9 1.9 2.2 

27 883 40 40 19* 2.1 2.4 1.8* 

35 889 40 40 40 1.3 1.4 1.7 

1  36 961 38* 1.4* 

11 

68 

90 

985 

942 

911 

9* 

15* 

40 40 40 

2.4* 

2.4* 

1.5 1.5 1.5 

vindicates 
lead wire 
snapped off 

31 963 40 40 ~ 1.3 1.7 ~ 

|  82 1043 40 40 40 1.6 2.2 2.0 ' I 

1  79 915 40 ! 40  ^ 40 1.5 1.1 1.2 

2 1 1022 5* 2.0*' 

25 | 896 40 40 40 2.1 2.0 | 1.4 

39 931 11* 2.6* 

1 939 40 | 8* | 1.2 1.2* | 

40 961  I 40 1 7* 1.7 | 3.1* 1 

1   5 
916   ! 3* 1.9* 

78 960 40 9* 1.8 2.7* 

1  89 942 40 40 40 2.0 1 6 2.0 

51 1 
COHT 

977   1 
IMUBD 

40 1 40  1 40 1 1.0 1 1 0 1 1.7 1 
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■ua(b«r 
M 

UOhm»/*C 

Nunber of Pulses 
Tsmp.in Hundreds 
of C above amb. 

First 
Bxjx 

Second 
Exp. 

Third 
Bxp. 

First 
Bxp. 

Second 
Bxp. 

Third 
Bxp. Notes 

14 

77 

1195 

987 

40 

21* 

40 40 1.2 

3.0* 

1.0 1.0 *xndicates 
firing 

20 1068 24* 2.6* 

50 1216 5* 2.3* 

80 957 16* 2.6* 

85 904 40 40 40 1.4 1.4 1.4 

43 937 16* 2.7* 

57 944 40 40 40 1.6 1.3 1.6 

10 875 40 40 40 1.1 1.3 1.1 

15 974 27* 2.6* 

81 941 40 40 40 1.9 1.5 0.5 

28 997 6* 2.5* 

76 902 40 40 40 1.2 1.4 0.8 
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Bridqewire Temperature and EED Response to a DC Simulation of a Train 
of 9Gc Pulses 

I Unit 
I.D. 

Number 

1  M micro- 
bhrns/"C 

J 
1 Number 

1  of 
Pulses 

1    'I emperature Hundreds 
of 0cl 

1      1 
tude 

i  " [__96a_. 
975 

L  14 3.2 1 1.8 X 
12 |  14 I  2-7 1.8 X 

94 
t  ̂

1024 

923 
(  14 !  2.7 1 1.8 1 x 

95 i  14 2.7 1.8 1  X 

65 1115   i  12 i  2.8 i 1.8 1 x 

86 882 1  15 3.5 1.8 X 

49 1216 , 14 3.1 i 1.8 X 

53 982 11 3.1 i 1.8 i x 
6 849 12 2.3 1.8 X 

91 993 11 2.6 l.R X 

97 9«>9 19 3.0 1.8 X 
61 945 11 2.7 1.8 X 

17 976 14 2.9 1.8 X 

69 932 11 3.0 1.8 X 

21 1021 11 2.5 1.8 x 

62 820 10 3.2 1.8 X 

4 1070 13 2.6 1.8 X 

84 1089 12 2.8 1.8 X 

99 925 10 2.8 1.8 X 

3 1005 9 3.1 1.8 X 

18 20 2.3 1-5 o 
7 977 20 2-2 1-5 o 
8 901 20 2.3 1.5 o 

46 949 20 2.5 1.5 e 
83 888 7 2.0 X 

44 935 ? ?   ! 2.0 | X 

87 922 ? ? 2.0 X 

70 881 7 3.7 2.0 X 
73 994 i 8 ! 3.6 | 2.0 ! X 

KEY: x indicates BE] D fired 
0 indict ites EBp did d ot firl 

3 indicj ites lo 18 of d hotoqri It-II 

\ 

.«««J 
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APPENDIX D 

SKIN DEPTH CALCULATIONS 

The ikin depth  for a cylindrical conductor is approxi- 
mated byt 

■/ 

2 

where   w « frequency 

i*e ■ permeability of free apace 

o ■ conductivity of the wire. 

In the inks system« 

ID <■ 2nx frequency in cps 

^0 - 4TI x 10"7 

o - 3,3 x 10 mhos/meter ( 80-20 platinum-iridium) 

-6 —4 
,% 62 3 x 10  meters ■ 1 x 10  inches - .1 mil. 
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